Role of intracellular calcium and NADPH oxidase NOX5-S in acid-induced DNA damage in Barrett's cells and Barrett's esophageal adenocarcinoma cells.
نویسندگان
چکیده
Mechanisms whereby acid reflux may accelerate the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. Acid and reactive oxygen species (ROS) have been reported to cause DNA damage in Barrett's cells. We have previously shown that NADPH oxidase NOX5-S is responsible for acid-induced H2O2 production in Barrett's cells and in EA cells. In this study we examined the role of intracellular calcium and NADPH oxidase NOX5-S in acid-induced DNA damage in a Barrett's EA cell line FLO and a Barrett's cell line CP-A. We found that pulsed acid treatment significantly increased tail moment in FLO and CP-A cells and histone H2AX phosphorylation in FLO cells. In addition, acid treatment significantly increased intracellular Ca(2+) in FLO cells, an increase that is blocked by Ca(2+)-free medium with EGTA and thapsigargin. Acid-induced increase in tail moment was significantly decreased by NADPH oxidase inhibitor diphenylene iodonium in FLO cells, and by blockade of intracellular Ca(2+) increase or knockdown of NOX5-S with NOX5 small-interfering RNA (siRNA) in FLO and CP-A cells. Acid-induced increase in histone H2AX phosphorylation was significantly decreased by NOX5 siRNA in FLO cells. Conversely, overexpression of NOX5-S significantly increased tail moment and histone H2AX phosphorylation in FLO cells. We conclude that pulsed acid treatment causes DNA damage via increase of intracellular calcium and activation of NOX5-S. It is possible that in BE acid reflux increases intracellular calcium, activates NOX5-S, and increases ROS production, which causes DNA damage, thereby contributing to the progression from BE to EA.
منابع مشابه
Bile acid receptor TGR5, NADPH Oxidase NOX5-S and CREB Mediate Bile Acid-Induced DNA Damage In Barrett’s Esophageal Adenocarcinoma Cells
The mechanisms whereby bile acid reflux may accelerate the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. In this study we found that bile acid taurodeoxycholic acid (TDCA) significantly increased the tail moment (TM) and histone H2AX phosphorylation in FLO-1 EA cells, an increase which was significantly decreased by knockdown of TGR5. Over...
متن کاملRho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.
Mechanisms of the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK) inhibitor Y27632 in BE mucosal biopsies and FLO-...
متن کاملSTAT5 mediates PAF-induced NADPH oxidase NOX5-S expression in Barrett's esophageal adenocarcinoma cells.
We have shown that NADPH oxidase NOX5-S is overexpressed in Barrett's esophageal adenocarcinoma (EA) cells and may contribute to the progression from Barrett's esophagus (BE) to EA presumably by increasing cell proliferation and decreasing apoptosis (Fu X, Beer DG, Behar J, Wands J, Lambeth D, Cao W. J Biol Chem 281: 20368-20382, 2006). The mechanism(s) of NOX5-S overexpression in EA, however, ...
متن کاملSignaling in H2O2-induced increase in cell proliferation in Barrett's esophageal adenocarcinoma cells.
Mechanisms whereby acid reflux may accelerate the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have previously shown that NADPH oxidase NOX5-S generates reactive oxygen species (ROS) when Barrett's metaplastic cells are exposed to acid. Besides metaplastic cells, other H(2)O(2)-producing cells (e.g., inflammatory cells) present in BE m...
متن کاملRole of Rac1 in regulation of NOX5-S function in Barrett's esophageal adenocarcinoma cells.
We have shown that a novel NADPH oxidase isoform, NOX5-S, is the major isoform of NADPH oxidases in an esophageal adenocarcinoma (EA) cell line, FLO, and is overexpressed in Barrett's mucosa with high-grade dysplasia. NOX5-S is responsible for acid-induced reactive oxygen species production. In this study, we found that mRNA levels of NOX5-S were significantly higher in FLO EA cells than in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 306 10 شماره
صفحات -
تاریخ انتشار 2014